Abstract

Three dimensional domain swapping is one of the mechanisms involved in formation of insoluble aggregates of some amyloidogenic proteins. It has been proposed that proteins able to swap domains may share some common structural elements like conformationally constrained flexible turns/loops. We studied the role of loop L1 in the dimerization of human cystatin C using mutational analysis. Introduction of turn-favoring residues such as Asp or Asn into the loop sequence (in position 57) leads to a significant reduction of the dimer fraction in comparison with the wild type protein. On the other hand, introduction of a proline residue in position 57 leads to efficient dimer formation. Our results confirm the important role of the loop L1 in the dimerization process of human cystatin C and show that this process can be to some extent governed by single amino acid substitution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.