Abstract

The macroscopic governing equations controlling the coupled electromagnetics and acoustics of porous media are derived here from first principles. The porous material is assumed to consist of a packing of solid grains that is saturated by an electrolyte. A sedimentary rock is an example of such a material. The approach is to volume average the equations known to apply in the fluid and solid phases while allowing for the boundary conditions that exist on the fluid-solid interface. The coupling is due to a layer of excess charge adsorbed to the sufaces of the solid grains that is balanced by mobile ions in the fluid electrolyte; i.e., the coupling is electrokinetic in nature. The derived equations have the form of Maxwell's equations coupled to Biot's equations with coupling occurring in the flux-force (or transport) relations. The frequency-dependent macroscopic-transport coefficients are explicitly obtained and related to each other. Onsager reciprocity is derived and is not simply postulated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.