Abstract

Blastomeres of the pre-implantation mouse embryo form trophectoderm and inner cell mass via a process that requires the transcription factors Tead4, Cdx2, Oct4 and Nanog. In mouse morulae cloned by somatic cell nuclear transfer, we observed that the trophectoderm transcription factor Cdx2 is expressed very differently at the protein level compared to time- and stage-matched fertilized counterparts. Protein levels of Cdx2 in cloned embryos appear ‘erratic,’ i.e. are widely distributed, when plotted as histograms. In contrast to Cdx2, protein levels of the upstream factor Tead4 and of inner cell mass transcription factors Oct4 and Nanog are similar in cloned and fertilized embryos. These observations suggest that trophectoderm formation is initiated but not maintained correctly in cloned mouse morulae, which is consistent with cloned blastocysts' limited implantation and post-implantation success. Because a cell's ability to differentiate is greatly enhanced if it is surrounded by more cells differentiating the same way, a concept designated community effect by Gurdon, we reasoned that the insufficient cell numbers often observed in cloned embryos might lead to premature Cdx2 expression and differentiation of blastomeres into trophectoderm. Therefore, we created larger cloned embryos by aggregating them at the 4-cell stage. Homologous aggregation stimulates expression of multiple signaling pathways' components and results in cloned embryos with levels of Cdx2 similar to fertilized embryos. Most of the resultant morulae and blastocysts consist of cells of all three founders, indicating that aggregation increases stability of all of the individual components. We conclude that the induction of pluripotency in cloned embryos is more efficient than previously assumed, and we propose that a minimum cell number is necessary to stabilize pluripotency and inhibit premature expression of Cdx2 in cloned mouse embryos.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.