Abstract

The topological transformation of optical vortex beams from fractional fork holograms induced by the modulation of controlled Gouy phase (GP) is demonstrated. The GP change is tuned by varying the wavefront curvature of the input beam on the plane of the fractional phase generating optic. The locus of the point of singularity traces a semi-circle about the beam axis for maximum possible change of the associated GP. The morphology parameters describing the anisotropic vortex phases of generated optical vortices are tuned in the experiment by varying the input wavefront curvature. Through the transformation of the transverse Poynting vector of the fractional vortex beams, control of the extrinsic orbital angular momentum is demonstrated for the first time, to the best of our knowledge. This could enable better manipulation of an optically trapped micro-particle and be used in optically driven micro-machines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.