Abstract

We introduce the concept of cyclic morphisms with respect to a morphism in the category of pairs as a generalization of the concept of cyclic maps and we use the concept to obtain certain sets of homotopy classes in the category of pairs. For these sets, we get complete or partial answers to the following questions: (1) Is the concept the most general concept in the class of all concepts of generalized Gottlieb subsets intro- duced by many authors until now? (2) Are they homotopy invariants in the category of pairs? (3) When do they have a group structure?

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.