Abstract

Monarch butterflies (Danaus plexippus) are well studied for their annual long-distance migration from as far north as Canada to their overwintering grounds in Central Mexico. At the end of the cold season, monarchs start to repopulate North America through short-distance migration over the course of multiple generations. Interestingly, some populations in various tropical and subtropical islands do not migrate and exhibit heritable differences in wing shape and size, most likely an adaptation to island life. Less is known about forewing differences between long- and short-distance migrants in relation to island populations. Given their different migratory behaviors, we hypothesized that these differences would be reflected in wing morphology. To test this, we analyzed forewing shape and size of three different groups: nonmigratory, lesser migratory (migrate short-distances), and migratory (migrate long-distances) individuals. Significant differences in shape appear in all groups using geometric morphometrics. As variation found between migratory and lesser migrants has been shown to be caused by phenotypic plasticity, and lesser migrants develop intermediate forewing shapes between migratory and nonmigratory individuals, we suggest that genetic assimilation might be an important mechanism to explain the heritable variation found between migratory and nonmigratory populations. Additionally, our research confirms previous studies which show that forewing size is significantly smaller in nonmigratory populations when compared to both migratory phenotypes. Finally, we found sexual dimorphism in forewing shape in all three groups, but for size in nonmigratory populations only. This might have been caused by reduced constraints on forewing size in nonmigratory populations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.