Abstract

Hypercholesterolemia is one of the major risk factors for the development of cardiovascular disease. This study aims to elucidate the effect of gossypin on cholesterol metabolism in HepG2 cells. Results indicated that gossypin significantly reduced the total cholesterol concentration in a dose-dependent manner. There was a time- and dose-dependent increase in the expression of low-density lipoprotein receptor (LDLR) protein. However, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme in cholesterol synthesis, was not affected by gossypin. Moreover, gossypin had no effect on nuclear sterol regulatory element binding proteins (SREBP)-2 abundance. The activity of gossypin on LDLR expression was inhibited by the extracellular signal-regulated kinase (ERK) inhibitor PD98059. Western blotting analysis revealed that gossypin treatment dose- and time-dependently increased ERK activation and preceded the up-regulation of LDLR expression. Collectively, these new findings identify gossypin as a new hypocholesterolemic agent that up-regulates LDLR expression independent of SREBP-2 but is dependent on ERK activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.