Abstract

In instances of online kernel learning where little prior information is available and centralized learning is unfeasible, past research has shown that distributed and online multi-kernel learning provides sub-linear regret as long as every pair of nodes in the network can communicate (i.e., the communications network is a complete graph). In addition, to manage the communication load, which is often a performance bottleneck, communications between nodes can be quantized. This letter expands on these results to non-fully connected graphs, which is often the case in wireless sensor networks. To address this challenge, we propose a gossip algorithm and provide a proof that it achieves sub-linear regret. Experiments with real datasets confirm our findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.