Abstract

Gossip-based communication protocols are appealing in large-scale distributed applications such as information dissemination, aggregation, and overlay topology management. This paper factors out a fundamental mechanism at the heart of all these protocols: the peer-sampling service. In short, this service provides every node with peers to gossip with. We promote this service to the level of a first-class abstraction of a large-scale distributed system, similar to a name service being a first-class abstraction of a local-area system. We present a generic framework to implement a peer-sampling service in a decentralized manner by constructing and maintaining dynamic unstructured overlays through gossiping membership information itself. Our framework generalizes existing approaches and makes it easy to discover new ones. We use this framework to empirically explore and compare several implementations of the peer-sampling service. Through extensive simulation experiments we show that---although all protocols provide a good quality uniform random stream of peers to each node locally---traditional theoretical assumptions about the randomness of the unstructured overlays as a whole do not hold in any of the instances. We also show that different design decisions result in severe differences from the point of view of two crucial aspects: load balancing and fault tolerance. Our simulations are validated by means of a wide-area implementation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.