Abstract
Let \(\mathcal {A}\) and \(\mathcal {B}\) be abelian categories and \({\mathbf {F}} :\mathcal {A}\rightarrow \mathcal {B}\) an additive and right exact functor which is perfect, and let \(({\mathbf {F}},\mathcal {B})\) be the left comma category. We give an equivalent characterization of Gorenstein projective objects in \(({\mathbf {F}},\mathcal {B})\) in terms of Gorenstein projective objects in \(\mathcal {B}\) and \(\mathcal {A}\). We prove that there exists a left recollement of the stable category of the subcategory of \(({\mathbf {F}},\mathcal {B})\) consisting of Gorenstein projective objects modulo projectives relative to the same kind of stable categories in \(\mathcal {B}\) and \(\mathcal {A}\). Moreover, this left recollement can be filled into a recollement when \(\mathcal {B}\) is Gorenstein and \({\mathbf {F}}\) preserves projectives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.