Abstract

We define and study a notion of Gorenstein projective dimension for complexes of left modules over associative rings. For complexes of finite Gorenstein projective dimension we define and study a Tate cohomology theory. Tate cohomology groups have a natural transformation to classical Ext groups. In the case of module arguments, we show that these maps fit into a long exact sequence, where every third term is a relative cohomology group defined for left modules of finite Gorenstein projective dimension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.