Abstract
We generalize the monomorphism category from quiver (with monomial relations) to arbitrary finite dimensional algebras by a homological definition. Given two finite dimension algebras A and B, we use the special monomorphism category Mon(B,A-Gproj) to describe some Gorenstein projective bimodules over the tensor product of A and B. If one of the two algebras is Gorenstein, we give a sufficient and necessary condition for Mon(B,A-Gproj) being the category of all Gorenstein projective bimodules. In addition, if both A and B are Gorenstein, we can describe the category of all Gorenstein projective bimodules via filtration categories. Similarly, in this case, we get the same result for infinitely generated Gorenstein projective bimodules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.