Abstract

By investigating the properties of some special covers and envelopes of modules, we prove that if R is a Gorenstein ring with the injective envelope of R R flat, then a left R-module is Gorenstein injective if and only if it is strongly cotorsion, and a right R-module is Gorenstein flat if and only if it is strongly torsionfree. As a consequence, we get that for an Auslander-Gorenstein ring R, a left R-module is Gorenstein injective (resp. flat) if and only if it is strongly cotorsion (resp. torsionfree).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.