Abstract

We show that a differential module is Gorenstein projective (injective, respectively) if and only if its underlying module is Gorenstein projective (injective, respectively). We then relate the Ringel–Zhang theorem on differential modules to the Avramov–Buchweitz–Iyengar notion of projective class of differential modules and prove that for a ring R there is a bijective correspondence between projectively stable objects of split differential modules of projective class not more than 1 and R-modules of projective dimension not more than 1, and this is given by the homology functor H and stable syzygy functor ΩD. The correspondence sends indecomposable objects to indecomposable objects. In particular, we obtain that for a hereditary ring R there is a bijective correspondence between objects of the projectively stable category of Gorenstein projective differential modules and the category of all R-modules given by the homology functor and the stable syzygy functor. This gives an extended version of the Ringel–Zhang theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.