Abstract

Let $\mathscr {A}$ be an abelian category and $\mathscr {X},\mathscr {Y},\mathscr {Z}$ additive full subcategories of $\mathscr {A}$. We introduce and study the Gorenstein category $\mathcal {G}(\mathscr {X},\mathscr {Y},\mathscr {Z})$ as a common generalization of some known modules such as Gorenstein projective (injective) modules \cite {EJ95}, strongly Gorenstein flat modules \cite {DLM} and Gorenstein FP-injective modules \cite {DM}, and prove the stability of $\mathcal {G}(\mathscr {X},\mathscr {Y},\mathscr {Z})$. We also establish Gorenstein homological dimensions in terms of the category $\mathcal {G}(\mathscr {X},\mathscr {Y},\mathscr {Z})$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.