Abstract

As our society becomes more information-driven, we have begun to amass data at an astounding and accelerating rate. At the same time, power concerns have made it difficult to bring the necessary processing power to bear on querying, processing, and understanding this data. We describe Gordon, a system architecture for data-centric applications that combines low-power processors, flash memory, and data-centric programming systems to improve performance for data-centric applications while reducing power consumption. The paper presents an exhaustive analysis of the design space of Gordon systems, focusing on the trade-offs between power, energy, and performance that Gordon must make. It analyzes the impact of flash-storage and the Gordon architecture on the performance and power efficiency of data-centric applications. It also describes a novel flash translation layer tailored to data intensive workloads and large flash storage arrays. Our data show that, using technologies available in the near future, Gordon systems can out-perform disk-based clusters by 1.5× and deliver up to 2.5× more performance per Watt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.