Abstract

Heterogeneous electro-Fenton (EF) technology has been wildly applied for the treatment of wastewater containing dyes and other organic pollutants. However, biologically treatment should be further applied after heterogeneous electro-Fenton process in order get better effluent quality. In the present study, a simple electropolymerization method using poly (3,4-ethylenedioxythiophene) (PEDOT) and graphene oxide (GO) was applied for graphite felt (GF) electrode modification as cathode in EF system, and coupling subsequently aerobic granular sludge (AGS) biological treatment for dye wastewater treatment. The modified electrode was characterized by scanning electron microscopy (SEM), Raman spectrum, and cyclic voltammetry (CV). Data implied that much higher H2O2 productivity, current response and coulomb efficiency (CE) were achieved by using GO/PEDOT:NaPSS modified GF. The results could be ascribed to the synergistic effect between PEDOT and GO that accelerated the electron transfer rate. Moreover, the H2O2 production capacity remained over 84.2% after 10-times reuses for GO/PEDOT:NaPSS modified GF, indicating that GO significantly improved the stability and life of electrode. Compared with the single system, the total organic carbon (TOC) and chemical oxygen demand (COD) removal efficiencies of the combined system degradation methylene blue (MB) wastewater were significantly improved. Therefore, this modified GF could be used as a potentially useful cathode in heterogeneous EF technology for actual wastewater treatment and the combined system have a promising engineering application value in MB wastewater degradation field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call