Abstract

The trans-Golgi network must coordinate sorting and secretion of proteins and lipids to intracellular organelles and the plasma membrane. During polarization of epithelial cells, changes in the lipidome and the expression and distribution of proteins contribute to the formation of apical and basolateral plasma membrane domains. Previous studies using HeLa cells show that the syndecan-1 transmembrane domain confers sorting within sphingomyelin-rich vesicles in a sphingomyelin secretion pathway. In polarized Madin-Darby canine kidney cells, we reveal differences in the sorting of syndecan-1, whereupon the correct trafficking of the protein is not dependent on its transmembrane domain and changes in sphingomyelin content of cells during polarization. Instead, we reveal that correct basolateral targeting of syndecan-1 requires a full-length PDZ motif in syndecan-1 and the PDZ domain golgin protein GOPC. Moreover, we reveal changes in Golgi morphology elicited by GOPC overexpression. These results suggest that the role of GOPC in sorting syndecan-1 is indirect and likely due to GOPC effects on Golgi organization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.