Abstract

A detailed study on Goos-Hänchen (GH) lateral displacements of the reflected and transmitted waves propagating at the interface between an isotropic medium and a gyroelectric medium in Voigt configuration is presented. After the reflection coefficient and transmission coefficient are derived, based on the stationary phase approach, GH lateral displacements are obtained analytically. The numerical results for a specific gyroelectric medium are also given. It shows that with the existence of an applied magnetic field, the GH effect occurs not only during total reflection but also during nontotal reflection, which is not true for isotropic media. Moreover, due to the nonreciprocal property of the gyroelectric medium, the sign of the incident angle also influences the displacements. Finite-element method simulations have verified the theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.