Abstract

Misexpression of the dorsal mesodermal patterning factor goosecoid on the ventral side of amphibian embryos results in inhibition of blood formation in early embryogenesis. To investigate the mechanism of this inhibition, we ectopically expressed goosecoid in erythroleukemia cells. While erythroid differentiation of these cells can be induced by activin, goosecoid expressing cells were unresponsive to activin. We demonstrate an in vitro interaction between the oncogene PU.1, an ets family transcription factor thought to play a role in erythropoiesis, and the goosecoid protein (GSC). Interaction with PU.1 was specific as GSC did not bind to the ets family members, Fli-1 or Ets-2. The ability of goosecoid expressing erythroleukemia cells to differentiate in response to activin was rescued by coexpression of the GSC-binding N-terminal portion of PU.1. The N-terminal portion of PU.1 was co-immunoprecipitated with anti-GSC antibodies as well. The N-terminal domain of PU.1 is the region recognized by the retinoblastoma protein (Rb), a tumor suppressor gene presumably involved in erythroid differentiation. We show that GSC competitively inhibits binding of Rb to PU.1. Our data suggest that the suppression of blood formation by GSC could, at least in part, be mediated by binding to PU.1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.