Abstract

The Xenopus homologue of Brachyury, Xbra, is expressed in the presumptive mesoderm of the early gastrula. Induction of Xbra in animal pole tissue by activin occurs only in a narrow window of activin concentrations; if the level of inducer is too high, or too low, the gene is not expressed. Previously, we have suggested that the suppression of Xbra by high concentrations of activin is due to the action of genes such as goosecoid and Mix.1. Here, we examine the roles played by goosecoid and Mix.1 during normal development, first in the control of Xbra expression and then in the formation of the mesendoderm. Consistent with the model outlined above, inhibition of the function of either gene product leads to transient ectopic expression of Xbra. Such embryos later develop dorsoanterior defects and, in the case of interference with Mix.1, additional defects in heart and gut formation. Goosecoid, a transcriptional repressor, appears to act directly on transcription of Xbra. In contrast, Mix.1, which functions as a transcriptional activator, may act on Xbra indirectly, in part through activation of goosecoid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.