Abstract

The role of facile curcumin dispersion and its hydrophobic complexation onto GLP, in the form of shell (GLPC-E), core (GLPE-C) and with synergy (GLP-ECE), on the protein interfacial and emulsion stabilization was investigated. Turbiscan instability index, microrheological elasticity, viscosity and solid-liquid balance values showed that the O/W emulsion stability was in the order of GLP-E < GLPC-E < GLPE-C < GLP-ECE. GLP-ECE also gave the most reduced D [4, 3] (8.11 ± 0.14 μm) with lowest indexes of flocculation (2.80 ± 0.05 %) and coalescence (2.83 ± 0.10 %) at day 5. Interfacial shear rheology suggested the GLP-curcumin complexation fortified the GLP interfacial gelling and then the efficiency as steric stabilizer, especially of core-shell complexation (14.2 mN/m) that showed the most sufficient in-plane protein interaction against strain. Dilatational elasticity and desorption observation revealed the synergistic curcumin complexation facilitated GLP unfolding and macromolecular association at O/W interface, as was also verified from SEM image and surface hydrophobicity (from 36.23 to 76.04). Overall, this study firstly reported the facile curcumin bi-physic dispersion and GLP complexation in improving the emulsion stabilizing efficiency of the protein by advancing its interfacial stabilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.