Abstract

This study explores the Goos–Hänchen (GH) shift phenomenon within a cavity hosting a V-type three-level atomic system, engaged with two independent broadband squeezed baths. Our exploration encompasses a thorough analysis of the lateral shifts in both reflected and transmitted light beams, with a focus on the impact of critical factors, i.e, coupling field strength, incoherent pumping field strength, and squeezed vacuum intensity. Our results reveal an interplay of these parameters, resulting in distinctive negative and positive GH shifts in both reflected and transmitted light. In addition, a remarkable enhancement of GH shifts at specific angles of incidence is observed, presenting a wide-ranging modulation across diverse system parameters. This study not only enriches the understanding of the GH shift in complex atomic systems but also highlights the potential for the manipulation of these lateral shifts by fine-tuning key variables of the system, and contributes valuable insights to the broader field of optical phenomena in quantum systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.