Abstract

We present a theoretical investigation of the Goos-H\"anchen effect, i.e., the lateral shift of the light beam transmitted through one-dimensional biperiodic multilayered photonic systems consisting of equidistantmagnetic layers separated by finite size dielectric photonic crystals. We show that the increase of the number of periods in the photonic-magnonic structure leads to increase of the Goos-H\"anchen shift in the vicinity of the frequencies of defect modes located inside the photonic band gaps. Presence of the linear magnetoelectric coupling in the magnetic layers can result in a vanishing of the positive maxima of the cross-polarized contribution to the Goos-H\"anchen shift.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.