Abstract
Accurate forecasting of tourism demand is of utmost relevance for the success of tourism businesses. This paper presents a novel approach that extends autoregressive forecasting models by considering travellers’ web search behaviour as additional input for predicting tourist arrivals. More precisely, the study presents a method with the capacity to identify relevant search terms and time lags (i.e. time difference between web search activities and tourist arrivals), and to aggregate these time series into an overall web search index with maximal forecasting power on tourism arrivals. The proposed approach enables a thorough analysis of temporal relationships between search terms and tourist arrivals, thus, identifying patterns that reflect online planning behaviour of travellers before visiting a destination. The study is conducted at the leading Swedish mountain destination, Are, using arrival data and Google web search data for the period 2005–2012. Findings demonstrate the ability of the proposed approach to outperform traditional autoregressive approaches, by increasing the predictive power in forecasting tourism demand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.