Abstract
Resource estimation of a placer deposit is always a difficult and challenging job because of high variability in the deposit. The complexity of resource estimation increases when drill-hole data are sparse. Since sparsely sampled placer deposits produce high-nugget variograms, a traditional geostatistical technique like ordinary kriging sometimes fails to produce satisfactory results. In this article, a machine learning algorithm—the support vector machine (SVM)—is applied to the estimation of a platinum placer deposit. A combination of different neighborhood samples is selected for the input space of the SVM model. The trade-off parameter of the SVM and the bandwidth of the kernel function are selected by genetic algorithm learning, and the algorithm is tested on a testing data set. Results show that if eight neighborhood samples and their distances and angles from the estimated point are considered as the input space for the SVM model, the developed model performs better than other configurations. The proposed input space-configured SVM model is compared with ordinary kriging and the traditional SVM model (location as input) for resource estimation. Comparative results reveal that the proposed input space-configured SVM model outperforms the other two models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.