Abstract
Let X1,...,Xn be independent observations on a random variable X. This paper considers a class of omnibus procedures for testing the hypothesis that the unknown distribution of X belongs to the family of Cauchy laws. The test statistics are weighted integrals of the squared modulus of the difference between the empirical characteristic function of the suitably standardized data and the characteristic function of the standard Cauchy distribution. A large-scale simulation study shows that the new tests compare favorably with the classical goodness-of-fit tests for the Cauchy distribution, based on the empirical distribution function. For small sample sizes and short-tailed alternatives, the uniformly most powerful invariant test of Cauchy versus normal beats all other tests under discussion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annals of the Institute of Statistical Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.