Abstract

We consider goodness-of-fit tests of symmetric stable distributions based on weighted integrals of the squared distance between the empirical characteristic function of the standardized data and the characteristic function of the standard symmetric stable distribution with the characteristic exponent $\alpha$ estimated from the data. We treat $\alpha$ as an unknown parameter, but for theoretical simplicity we also consider the case that $\alpha$ is fixed. For estimation of parameters and the standardization of data we use maximum likelihood estimator (MLE) and an equivariant integrated squared error estimator (EISE) which minimizes the weighted integral. We derive the asymptotic covariance function of the characteristic function process with parameters estimated by MLE and EISE. For the case of MLE, the eigenvalues of the covariance function are numerically evaluated and asymptotic distribution of the test statistic is obtained using complex integration. Simulation studies show that the asymptotic distribution of the test statistics is very accurate. We also present a formula of the asymptotic covariance function of the characteristic function process with parameters estimated by an efficient estimator for general distributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.