Abstract

Consistent goodness-of-fit tests are proposed for symmetric and asymmetric multivariate Laplace distributions of arbitrary dimension. The test statistics are formulated following the Fourier-type approach of measuring the weighted discrepancy between the empirical and the theoretical characteristic function, and result in computationally convenient representations. For testing the symmetric Laplace distribution, and in the particular case of a Gaussian weight function, a limit value of these test statistics is obtained when this weight function approaches a Dirac delta function. Interestingly, this limit value is related to a couple of well-known measures of multivariate skewness. A Monte Carlo study is conducted in order to compare the new procedures with standard tests based on the empirical distribution function. A real data application is also included.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.