Abstract
In recent years, stationary time series models based on copula functions became increasingly popular in econometrics to model nonlinear temporal and cross-sectional dependencies. Within these models, we consider the problem of testing the goodness-of-fit of the parametric form of the underlying copula. Our approach is based on a dependent multiplier bootstrap and it can be applied to any stationary, strongly mixing time series. The method extends recent i.i.d. results by Kojadinovic et al. (2011) and shares the same computational benefits compared to methods based on a parametric bootstrap. The finite-sample performance of our approach is investigated by Monte Carlo experiments for the case of copula-based Markovian time series models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.