Abstract

In tumorigenicity experiments, a complication is that the time to event is generally not observed, so that the time to tumor is subject to interval censoring. One of the goals in these studies is to properly model the effect of dose on risk. Thus, it is important to have goodness of fit procedures available for assessing the model fit. While several estimation procedures have been developed for current-status data, relatively little work has been done on model-checking techniques. In this article, we propose numerical and graphical methods for the analysis of current-status data using the additive-risk model, primarily focusing on the situation where the monitoring times are dependent. The finite-sample properties of the proposed methodology are examined through numerical studies. The methods are then illustrated with data from a tumorigenicity experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.