Abstract

Metal halide perovskite solar cells have rapidly emerged as leading contenders in photovoltaic technology. Compositions with a mixture of cation species on the A-site show the best performance and have higher stability. However, the underlying fundamentals of such an enhancement are not fully understood. Here, we investigate the local structures and dynamics of mixed A-cation compositions. We show that substitution of low concentrations of smaller cations on the A-site in formamidimium lead iodide (CH(NH2)2PbI3) results in a global “locking” of the PbI6 octahedra tilting. In the locked structure the octahedra tilt at a larger angle but undergo a much reduced amplitude of rocking motion. A key impact of this feature is that the rotational or tumbling motion of the CH(NH2)2+ molecular ion in a locked cage is severely restricted. We discuss the impact of locking on the photovoltaic performance and stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.