Abstract
The design development of a small, hand held, battery operated, breath actuated inhaler as a drug/device platform for inhaled insulin posed a number of technical challenges. Our goal was to optimize lung deposition and distribution with aerosol generators producing 3-6μm particle size distribution. In silico modeling with computational fluid dynamics (CFD) and in vitro testing of device components were assessed using an Alberta idealized adult airway (Copley, UK) to optimize mouthpiece and aerosol path design for dose delivered distal to the trachea. Human factors use testing was designed to determine the ability to perform inspiratory manuevers with LED guidance within target flow limits. In vivo testing with healthy normal subjects of radiolabeled aerosol compared 2 breathing patterns for lung deposition efficiency, distribution, and subject preference. CFD demonstrated that flows ≤5L/min and ≥15L/min reduced the delivery efficiencg. Prototypes tested with inspiratory flow of 10L/min provided up to 70% of dose delivered distal to the model throat with aerosols of 3 to 6μm. Users guided by LED were able to inhale for 8-24s with 5s breath hold. Lung dose >70% with peripheral to central ratios >2.0 were achieved, with subject preference for the longer inspiratory time with breath hold. The device design phase integration led to a novel design and inspiratory pattern with greater levels of peripheral deposition than previously reported with commercial inhalers. The rationale and process of the application of these methods are described with implications for use in future device development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.