Abstract
We construct a new explicit family of good quantum low-density parity-check codes which additionally have linear time decoders. Our codes are based on a three-term chain (2m× m)V →δ0 (2m)E →δ1 2F where V (X-checks) are the vertices, E (qubits) are the edges, and F (Z-checks) are the squares of a left-right Cayley complex, and where the maps are defined based on a pair of constant-size random codes CA,CB:2m→2Δ where Δ is the regularity of the underlying Cayley graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.