Abstract

Quantum convolutional code was introduced recently as an alternative way to protect vital quantum information. To complete the analysis of quantum convolutional code, I report a way to decode certain quantum convolutional codes based on the classical Viterbi decoding algorithm. This decoding algorithm is optimal for a memoryless channel. I also report three simple criteria to test if decoding errors in a quantum convolutional code will terminate after a finite number of decoding steps whenever the Hilbert space dimension of each quantum register is a prime power. Finally, I show that certain quantum convolutional codes are in fact stabilizer codes. And hence, these quantum stabilizer convolutional codes have fault-tolerant implementations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.