Abstract
This paper proposes a novel approach to sentiment analysis that leverages work in sociology on symbolic interactionism. The proposed approach uses Affect Control Theory (ACT) to analyze readers’ sentiment towards factual (objective) content and towards its entities (subject and object). ACT is a theory of affective reasoning that uses empirically derived equations to predict the sentiments and emotions that arise from events. This theory relies on several large lexicons of words with affective ratings in a three-dimensional space of evaluation, potency, and activity (EPA). The equations and lexicons of ACT were evaluated on a newly collected news-headlines corpus. ACT lexicon was expanded using a label propagation algorithm, resulting in 86,604 new words. The predicted emotions for each news headline was then computed using the augmented lexicon and ACT equations. The results had a precision of 82%, 79%, and 68% towards the event, the subject, and object, respectively. These results are significantly higher than those of standard sentiment analysis techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.