Abstract

Weighted good- $$\lambda $$ type inequalities and Muckenhoupt–Wheeden type bounds are obtained for gradients of solutions to a class of quasilinear elliptic equations with measure data. Such results are obtained globally over sufficiently flat domains in $$\mathbb {R}^n$$ in the sense of Reifenberg. The principal operator here is modeled after the p-Laplacian, where for the first time singular case $$\frac{3n-2}{2n-1}<p\le 2-\frac{1}{n}$$ is considered. Those bounds lead to useful compactness criteria for solution sets of quasilinear elliptic equations with measure data. As an application, sharp existence results and sharp bounds on the size of removable singular sets are deduced for a quasilinear Riccati type equation having a gradient source term with linear or super-linear power growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.