Abstract

We derive robust good-deal hedges and valuations under combined model ambiguity about the drift and volatility of asset prices for incomplete markets. Good-deal valuations are determined such that not just opportunities for arbitrage but also for overly attractive reward-to-risk ratios are excluded, by restricting instantaneous Sharpe ratios for any market extension by derivatives. From a finance point of view, this permits for hedges and valuation bounds than are less extreme (respectively expensive) than those from the more fundamental approach of almost-sure superhedging and its corresponding no-arbitrage bounds. In mathematical terms, it demands however that not just ambiguities about the volatility but also about the drift become relevant. For general measurable contingent claims, possibly path-dependent, the solutions are described by 2nd-order backward stochastic differential equations with non-convex drivers, building on recent research progress on non-linear kernels. Hedging strategies are robust with respect to uncertainty in the sense that their tracking errors satisfy a supermartingale property under all a-priori valuation measures, uniformly over all priors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call