Abstract

GnRH has several direct actions on rat granulosa cells. Specific receptors for GnRH have been demonstrated on rat and human ovaries. Whether the porcine ovary has specific receptors for GnRH is still debated and the physiological actions of GnRH on porcine granulosa cells have not yet been clarified. Consequently, we have examined the actions of a GnRH agonist (GnRHa) on basal and LH stimulated progesterone secretion by porcine granulosa cells. GnRHa inhibited both basal and LH stimulated progesterone secretion by granulosa cells from medium (3–5 mm) and large (6–10 mm) antral follicles during 3 day incubations. LH stimulated progesterone secretion was more sensitive to inhibition than basal progesterone secretion. Studies on the time course for GnRHa inhibition of progesterone secretion indicated that the decrease in progesterone secretion occurred 48 to 72 hr after first exposure to GnRHa. Earlier inhibition occurred in only a fraction of the experiments. GnRHa did not have to be present during the time when inhibition occurred. Incubations of 2 days with GnRHa were just as effective as 3 day incubations at inhibiting progesterone secretion on day 3. Furthermore, a 30 min exposure to GnRHa on day 1 was just as inhibitory as a full 2 day incubation with GnRHa in inhibiting LH stimulated progesterone secretion on day 3. Incubation of the cells for 3 days prior to exposure of the cells to GnRHa did not alter the time course for GnRHa action. GnRHa did not alter the DNA content of the cultures in up to 6 day incubations or the number of viable cells attached to the wells in up to 3 day incubations. These studies suggest that an ovarian GnRH-like molecule could play a role in decreasing the responsiveness of particular follicles to LH and thus contribute to atresia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.