Abstract

Regulation of gonadotropin gene expression by sex steroids may occur via direct effects on the pituitary and/or indirect effects of steroids mediated through hypothalamic GnRH. We aimed to define the effects of testosterone (T) on alpha, LH beta, and FSH beta mRNA expression in the male rat after blockade of GnRH action on the gonadotrope. A water-soluble GnRH antagonist was administered iv to castrate male rats (increased endogenous GnRH secretion) and to castrate T-replaced rats in which gonadotropin subunit mRNAs had been increased by prior treatment with exogenous GnRH pulses. In castrate male rats, GnRH antagonist resulted in a fall in all three subunit mRNAs. Alpha and LH beta declined at slower rates (half-disappearance after 50 and 65 h, respectively), and neither fell to values present in intact rats over 84 h. In contrast, FSH beta mRNA declined more rapidly, with a half-disappearance after 20 h. In castrate T-replaced rats, alpha mRNA declined at a rate similar to that in castrates (half-disappearance after 50 h). LH beta declined more slowly, and the rate of FSH beta decline was markedly prolonged in the presence of T (half-disappearance time increased from 20 to 50 h). These results suggest that T exerts direct effects on FSH beta transcription or mRNA stability which are independent of GnRH action. To assess these possibilities, a long-acting GnRH antagonist (Detirelix) was administered to castrate male rats, which also received T or sham implants 4 days after castration. FSH beta mRNA levels fell during the 4 days of Detirelix alone, but the addition of T on day 4 resulted in a 2-fold rise in FSH beta mRNA, restoring FSH beta mRNA to levels present in intact rats. Serum FSH closely paralleled FSH beta mRNA concentrations. Alpha mRNA was reduced by 25%, and LH beta mRNA concentrations were unchanged in the presence of T. The rate of alpha mRNA transcription was markedly reduced and that of LH beta tended to fall in T-treated rats, but T had no significant effect on the FSH beta transcription rate. Thus, the action of T to increase concentrations of cytosolic FSH beta mRNA appears to be exerted at a posttranscriptional level, possibly via effects of T on FSH beta mRNA stability. This may represent a mechanism by which T can effect differential regulation of gonadotropin subunit mRNA concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.