Abstract

GnRH acts via GnRH receptors (GnRH-R) in the pituitary to cause the release of gonadotropins that regulate vertebrate reproduction. In the teleost fish, Haplochromis burtoni, reproduction is socially regulated through the hypothalamus-pituitary-gonadal axis, making the pituitary GnRH-R a likely site of action for this control. As a first step toward understanding the role of GnRH-R in the social control of reproduction, we cloned and sequenced candidate GnRH-R complementary DNAs from H. burtoni tissue. We isolated a complementary DNA that predicts a peptide encoding a G protein-coupled receptor that shows highest overall identity to other fish type I GnRH-R (goldfish IA and IB and African catfish). Functional testing of the expressed protein in vitro confirmed high affinity binding of multiple forms of GNRH: Localization of GnRH-R messenger RNA using RT-PCR revealed that it is widely distributed in the brain and retina as well as elsewhere in the body. Taken together, these data suggest that this H. burtoni GnRH receptor probably interacts in vivo with all three forms of GNRH:

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.