Abstract

We have demonstrated that continuous administration of a gonadotropin-releasing hormone agonist (GnRH-Ag) in vivo suppressed progesterone production and induced apoptosis in the corpus luteum (CL) of the pregnant rat. To investigate the mechanism(s) by which progesterone secretion is suppressed and apoptosis is induced in the luteal cells, we studied nitric oxide (NO) as a messenger molecule for GnRH action. Rats were treated individually on Day 8 of pregnancy with 5 microg/day of GnRH-Ag for 4, 8, and 24 h. GnRH-Ag decreased the production of progesterone and pregnenolone 8 and 24 h after the administration. Corresponding with the reduction in these steroid hormones, luteal NO concentrations decreased at 8 and 24 h. Western blotting and immunohistochemical studies of endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and neuronal nitric oxide synthase (nNOS) in the CL demonstrated that administration of GnRH-Ag was associated with a marked decrease in eNOS and iNOS compared with sham controls at 4 and 8 h, but nNOS did not change throughout the experimental period. We demonstrated, for the first time, the presence of nNOS protein in the CL of the pregnant rat. To determine if this suppressive action of GnRH-Ag is directly on the CL, luteal cells were treated with GnRH-Ag for 4, 8, 12, and 24 h in vitro. Progesterone and NO concentrations in the media decreased at 8 and 12 h after the treatment and recovered at 24 h. Western blots revealed that eNOS and iNOS decreased in luteal cells treated with GnRH-Ag compared with controls at 4 and 8 h. These results demonstrate that suppression of luteal NO synthesis by GnRH-Ag is direct and leads to a decrease in the luteal production and release of progesterone and pregnenolone and thus suggest that GnRH could induce luteolysis in pregnant rats via NO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call