Abstract

Gonadotropin-releasing hormone (GnRH) regulates reproduction in all vertebrates. Until recently, an antagonistic neuropeptide for gonadotropin was unknown. The discovery of an RFamide peptide in quail that inhibits gonadotropin release in vitro raised the possibility of direct hypothalamic inhibition of gonadotropin release. This peptide has now been named gonadotropin-inhibitory hormone (GnIH). We investigated GnIH presence in the hypothalamus of two seasonally breeding songbird species, house sparrows (Passer domesticus) and song sparrows (Melospiza melodia). Using immunocytochemistry (ICC), GnIH-containing neurones were localized in both species in the paraventricular nucleus, with GnIH-containing fibres visible in multiple brain locations, including the median eminence and brainstem. Double-label ICC with light microscopy and fluorescent ICC with confocal microscopy indicate a high probability of colocalization of GnIH with GnRH neurones and fibres within the avian brain. It is plausible that GnIH could be acting at the level of the hypothalamus to regulate gonadotropin release as well as at the pituitary gland. In a photoperiod manipulation experiment, GnIH-containing neurones were larger in birds at the termination of the breeding season than at other times, consistent with a role for this neuropeptide in the regulation of seasonal breeding. We have yet to elucidate the dynamics of GnIH synthesis and release at different times of year, but the data imply temporal regulation of this peptide. In summary, GnIH has the potential to regulate gonadotropin release at more than one level, and its distribution is suggestive of multiple regulatory functions in the central nervous system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call