Abstract

The objectives of the study were to clone the primary structure of the prostaglandin E2 receptor subtype 2 (PTGER2) cDNA and to characterize its regulation in equine follicles during gonadotropin-induced ovulation. Results from DNA isolation indicated that the equine PTGER2 cDNA encodes a predicted 353-amino acid protein, which is highly similar (76-85%) to known mammalian homologues. The regulation of PTGER2 was studied by semi-quantitative RT-PCR/Southern blot using preparations of theca interna and mural granulosa cells isolated from equine follicles 0-39 hr post-treatment with human chorionic gonadotropin (hCG). Results indicated that a significant increase of PTGER2 mRNA occurred at 24 and 39 hr post-hCG in granulosa cells, and 30 and 33 hr post-hCG in theca cells (P < 0.05). Immunohistochemical staining and immunoblotting performed on equine follicular samples showed a corresponding increase of PTGER2 protein in both cell types after treatment with hCG. Levels of PTGER2 mRNA were also high in uterus, thymus and spleen, but moderate to low in other tested tissues. In the ovary, the expression of PTGER4 mRNA was observed and predominantly occurred in granulosa cells, with highest abundance of transcripts observed at 12 and 39 hr post-hCG. Thus, this study reports for the first time in mares that the ovulatory process is accompanied by the gonadotropin-dependent up-regulation of PTGER2 and PTGER4, which may in turn regulate PGE2-mediated preovulatory effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call