Abstract
Genome-wide copy number analyses of human cancers identified a frequent 5p13 amplification in multiple solid tumor types, including lung (56%), ovarian (38%), breast (32%), prostate (37%) and melanoma (32%). Integrative analysis of the region identifies a Golgi protein, GOLPH3, as a candidate targeted for amplification. Gain- and loss-of-function studies in vitro and in vivo validated GOLPH3 as a potent oncogene. Physically, GOLPH3 localizes to the trans-Golgi network and interacts with components of the retromer complex, which in yeast has been linked to TOR signaling. Mechanistically, GOLPH3 regulates cell size, enhances growth factor-induced mTOR signaling in human cancer cells and alters response to mTOR inhibitor in vivo. Thus, reinforcing genomic and genetic, biological, functional and biochemical data in yeast and humans establish GOLPH3 as a novel oncogene that is commonly targeted for amplification in human cancer and capable of modulating the response to rapamycin, a cancer drug in clinical use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.