Abstract
Dendritic refinement is a critical component of activity-dependent neuronal circuit maturation, through which individual neurons establish specific connectivity with their target axons. Here, we demonstrate that the developmental shift of Golgi polarity is a key process in dendritic refinement. During neonatal development, the Golgi apparatus in layer 4 spiny stellate (SS) neurons in the mouse barrel cortex lose their original apical positioning and acquire laterally polarized distributions. This lateral Golgi polarity, which is oriented toward the barrel center, peaks on postnatal days 5-7 (P5-P7) and disappears by P15, which aligns with the developmental time course of SS neuron dendritic refinement. Genetic ablation of N-methyl-D-aspartate (NMDA) receptors, key players in dendritic refinement, disturbs the lateral Golgi polarity. Golgi polarity manipulation disrupts the asymmetric dendritic projection pattern and the primary-whisker-specific response of SS neurons. Our results elucidate activity-dependent Golgi dynamics and their critical role in developmental neuronal circuit refinement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.