Abstract
Gold nanoparticles (Au NPs) deposited on various cation- and anion-substituted hydroxyapatites (Au/sHAPs) show oxidative strong metal-support interaction (SMSI), wherein a thin layer of the sHAP covered the surface of the Au NPs by heat treatment in an oxidative atmosphere. Calcination of Au/sHAPs at 300 °C caused a partial SMSI and that at 500 °C gave fully encapsulated Au NPs. We investigated the influence of the substituted ions in sHAP and the degree of the oxidative SMSI on the catalytic performance of Au/sHAPs for oxidative esterification of octanal or 1-octanol with ethanol to obtain ethyl octanoate. The catalytic activity depends on the size of the Au NPs but not on the support used, owing to the similarity of the acid and base properties of sHAPs except for Au/CaFAP. The presence of a large number of acidic sites on CaFAP lowered the product selectivity, but all other sHAPs exhibited similar activity when the Au particle size was almost the same, owing to the similarity of the acid and base properties. Au/sHAPs_O2 with SMSI exhibited higher catalytic activity than Au/sHAPs_H2 without SMSI despite the fact that the number of exposed surface Au atoms was decreased by the SMSI. In addition, the oxidative esterification reaction proceeded even though the Au NPs were fully covered by the sHAP layer when the thickness of the layer was controlled to be less than 1 nm. The substrate can access the surfaces of the Au NPs covered by the thin sHAP layer (<1 nm), and the presence of the sHAP structure in close contact with the Au NPs resulted in significantly higher catalytic activity compared with that for fully exposed Au NPs deposited on the sHAPs. This result suggests that maximizing the contact area between the Au NPs and the sHAP support based on the SMSI enhances the catalytic activity of Au.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.