Abstract

Dynamical chiral symmetry breaking (DCSB) is one of the keystones of low-energy hadronic phenomena. Dyson-Schwinger equations provide a model-independent quark-level understanding and correlate that with the behaviour of the pion's Bethe-Salpeter amplitude. This amplitude is a core element in the calculation of pion observables and combined with the dressed-quark Schwinger function required by DCSB it yields a valence-quark distribution function for the pion that behaves as (1 – x ) 2 for x ∼ 1, in accordance with perturbative analyses. This behaviour can be verified at contemporary experimental facilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.