Abstract

The Goldstein-Kac telegraph process describes the one-dimensional motion of particles with constant speed undergoing random changes in direction. Despite its resemblance to numerous real-world phenomena, the singular nature of the resultant spatial distribution of each particle precludes the possibility of any a posteriori empirical validation of this random-walk model from data. Here we show that by simply allowing for random speeds, the ballistic terms are regularized and that the diffusion component can be well-approximated via the unscented transform. The result is a computationally efficient yet robust evaluation of the full particle path probabilities and, hence, the parameter likelihoods of this generalized telegraph process. We demonstrate how a population diffusing under such a model can lead to non-Gaussian asymptotic spatial distributions, thereby mimicking the behavior of an ensemble of Lévy walkers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.