Abstract

A facility has been developed to acquire hyperspectral cathodoluminescence (CL) images simultaneously with X-ray composition data. Based around an electron microprobe, the system uses a built-in Cassegrain microscope to efficiently couple emitted light directly into the entrance slit of an optical spectrograph. A cooled array detector allows the parallel acquisition of CL spectra, which are then built up into a multidimensional data-cube containing the full set of spectrally- and spatially-resolved information for later analysis. This setup has the advantage of allowing wavelength-dispersive X-ray (WDX) data to be recorded concurrently, providing a powerful technique for the direct comparison of luminescent and compositional properties of materials. The combination of beam and sample scanning thus allows the correlation of composition and luminescence inhomogeneities on length scales ranging from a few cm to sub-micron.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call